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( ABSTRACT

" We say that the random variable X 1is more variable than Y if
E{£(X)] Z/E[f(Y)] for all increasing convex functions f . We prove
a preservation, under random sized sums, property of this ordering
and then apply it to branching processes and shock models.
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SOME APPLICATIONS OF A RESULT CONCERNING VARIABILITY ORDERINGS

by

Sheldon M. Ross

1. A VARIABILITY RESULT

1f Xl and X2 are random variables having respective distributions

Fl and FZ , then we say that Xl ;<’_ XZ

(read xl is less variable than Xz)

or equivalently that F, < F if
152

o -]

ff(x)dFl(x) iff(x)sz(x)

0 0

for all increasing convex functions f . Some easily derived properties of

this ordering are

1. F. < F, if and only if
152

ffl(x)dx _>_ff‘2(x)dx for all a
0 a
where 1'-'i =1-F
= * * *
2. 1If Fi 3_ Gi ,1=1, 2 then Fl FZ ‘5,_G1 G2 where denotes

convolution.

We will now present a theorem concerning this ordericg and in Sections

2 and 3 apply it to branching processes and shock models.
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Theorem 1:

Let xl,xz, ... be a sequence of nonnegative independent and identically

distributed random variables and similarly Y Let N and M be

11Y29

integer valued nonnegative random variables that are independent of the Xi

and Y sequences. Then

i
)
X, >Y, ,1>1,N>M= X, > Y
tyt v 1=1 1T g1 1 1
Proof:
We will first show that
%)
X, > X, .
i=1 1V g=1 !
Let h denote an increasing convex function. To prove the above we must
show that
N M Q
(1) Eh(z xi) 3Eh(z xi> .
1 1
Since N > M , and they are independent of the Xi , the above will follow
v
if we can show that the function g(n) , defined by

g(a) = E[h(X, + ... + X))

is an increasing convex function of n . As it is clearly increasing

since h 1s and each xi is nonnegative it remains to show that g is

convex, or, equivalently, that

(2) g(n+1) - g(n) 1is increasing in n .
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To prove this let Sn = z Xi » and note that
1
g(n + 1) - g(n) = E[h(S_+ X _,) - h(5)] .

Now,

Elh(S_ + X ;) - h(S)) | S, = tl = E(h(t + X ;) - h(t)]

= £(t) (say).

As h 1is convex, it follows that f£(t) 1is increasing in ¢t . Also, as

Sn increases in n , we see that E[f(Sn)] increases in n . But
E(£(s )] = g(a + 1) - g(n)

and thus (2) and (1) are satisfied.

We have thus proven that

0128
ted
e
<|v
o112
>
.-l

and the proof will be completed by showing that
Tx, 21
X, > Y,
1 i vi1 t
or, equivalently, that for increasing, convex h

M- 44

But




: ¥ Y
! : E|n{ ) Xi | M = m| = E|h 2 X ) by independence
: 1 RV

) ? ?
Y since X Y
i_ 1 i i i

S Y

< v

and the result follows by taking expectations of both sides of the above.]l




2. A BRANCHING PROCESS APPLICATION

Consider two Galton Watson branching processes in which individuals

at the end of their lifetime give birth to a random number of offspring.

Let X?i) b

in j>1,n>0 denote the number of offspring of the jt

individual of the nth generation in the ith branching process, i =1, 2,

Suppose that the random variables X(i) » J>1, n>0 are independent

3

for i =1, 2 and have a distribution not depending on j . In additiomn,

suppose that

X(l) > X§§) for all n , j

jn 7

Let Zsi) , 1=1, 2 denote the size of the nth generation of the ith
process.

Proposition 2:

(1 Z;z) for all n .

iz 21, 1-1,2, thenm zV >
0 n v

Proof:

The proof is by induction on n . As it is true for n =20 ,

assume it for n . Now

(D

M _ F LD
zn+l jzl Xj,n

(2) _ ¥ (2
Zn+l jzl xj,n

and so the result follows from Theorem 1. ||
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We now show that if the second (less) variable process has the same

mean number of offspring per individual as does the first then it is

less likely, at each generation to become extinct.

Corollary 3:

Suppose E[X?l)] = E[ggz)] for all 3 , n . If Z(i) =1, 1i=1, 2
in jn 0

and x> %P fora11 j, n 3
jn. = %jn A
v '.
?
P{Z(l) = O} > P{Z(z) = 0} for all n . ;
n bt n
Proof:

From Proposition 2 we have that Zél) z_Ziz) and thus
v

P ]

i=2 7 i=2

e )

n-1
or, equivalently, since E[Z(l)] = I E[xg)] = E[Z(Z)] =y
" i=o L3* n

uo- P{Z(l) > 1} >u- P«{Z(z) > l}

n n

which proves the result.||

Remarks:
(i) 1In {2}, Freedman and Purves showed that among all branching
processes for which P[X. =1] =0 and E[X, ] =M< 2,
Jn jn

all j , n, the one having the least chance of going extinct

= 2}

is the one with P{X, =0} =1 - M/2 = 1 - P{X,
jn jn

This also follows from Corollary 3 upon application of the

following lemma (with a = 0)
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Lemma 4:

M - a)
2

and let Y be a nonnegative, integer valued, and such that P{Y = 1} <«

Let PX=1}=a , P{X=0}= (1 - 2a) - , P{X = 2}

and E{Y] =M., If o <M<2-a them X <VY.

v
Proof:
We must show that
Y} P{x>i}l< ] P{Y>i},n=1,2,
i=n+l i=n+1

As E[X] = E[Y] = M this is equivalent to

n n
Y P{X>i} > } P{Y>1i}, n=1,2,
i=1 i=1
When n = 1 the above reduces to P{X = 0} < P{Y = 0}. This follows
since, as P{Y = 1} < P{X = 1} , if P{Y = 0} < P{X = O} then it would
not be possible for E[Y] to equal E[X] . When n > 1 the above is

equivalent to

n
M> Y P{Y > i}
i=1

which follows since E[Y] =M .||
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3. A SHOCK MODEL APPLICATION

Suppose that shocks occur in accordance with a renewal process having

interarrival distribution G and mean He - Each shock gives rise to a

nonnegative random damage which, independent of all else, has probability

distribution F . The damages are assumed to be additive and we let

D(t) denote the damage at time ¢t . That is

where Xi is the damage of the ith shock and N(t) 1is the number of

shocks by t . The system is assumed to fail the first time that D(t)

exceeds some constant c That is, the system fails at time TF G where
3

TF,G = min {t : D(t) > ¢}

We will obtain a variabilityv result about TF G when both F and G

are NBUE distributions, where a distribution of a nonnegative random

variable X 1is said to be NBUE (new better than used in expectatien) if

E(X -t | X >t] < E[X] for all t >0 .

Letting

N(ec) =max {n : X, + ... + X < ¢}
1 n—

then the system will fail at the time of the WN(c) + 1 shock.

Lemma 5:

If F 1is NBUE then

N(e) + 1 < N () + 1
v
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*
where N (¢) 1is a Poisson random variable with mean cup where

ugp = E[X]

Proof:

As N(¢) 1is just the number of renewals by time ¢ of a renewal
process whose interarrival distribution is NBUE with mean u the result

follows from Theorem 3.17 on page 173 of [1].]]

Proposition 6:

If F and G are both NBUE distributions then

where E., and E2 are exponential random variables having the same means

1

as F and G respectively.

Proof:

We can express TF c by
b4

N(§)+1
T = Y,
F,G i=1 i

where the Yi , 1 >1, are the interarrival times between successive

shocks. They are thus independent and have distribution G . Now it is

well known that an NBUE distribution G is less variable than an exponential

distribution with the same mean and so

€y when €y is exponential with mean Hg -

<A

The result now follows from Lemma 5 and Theorem 1.

e
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Remark:

*
As T g = € s it follows upon conditioning on N (¢) that

i
| ®  =poc (Upe)
P T < Xy = z e F ——E;——-G (x)
l - it i+1
2 i
where Cn(x) is the gamma distribution with parameters n and l/uG

(its mean is nuG) Also if F and G are NBUE then from Proposition 6

all of the moments of TF ¢ 2re no greater than the corresponding moments
bl
of TEl,Ez . For instance

E[TF,G] hs E[TE:L,EZ] = E[(N*(c) + l)uG] = (ch + 1)UG .
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